Towards authentication of
transparent systems

Fredrik Stromberg @ OSFC Oct 11th, 2023

“ALL models are wrong, but some
are useful.”

- George Box (Science and statistics)

System Transparenc
Authentication Mec

Xanism

STAM

1s (or rather will be)

an authentication mechanism for transparent systems.
A system 1s transparent 1f 1ts reachable state space

e can be cryptographically proven by induction starting from
the platform’s procurement and provisioning manifest,

e has enough conceptual integrity to be comprehended by the
auditor and

e 1s globally discoverable by a transparency log monitor.

Work in progress!

STAM

builds on

e secure network communication protocols with entity
authentication mechanisms

e remote attestation
e reproducible builds
e Sigsum (transparency logging with witness cosigning) and

e ~ “state space constrainment auditability” (?)

Secure communication

Secure communication
protocol design

10-20 years ago.:
Cryptographically porous

Today:
Cryptographically verifiable (e.g. WireGuard)

Secure communication
protocol design

1. Pre-shared public key —>
2. ECDH —>

3. KDF —>

4

. Symmetric enc/dec & sign/verify (e.g. HMAC):

Authenticated, forward secret, confidential and
integrity—-protected communication channel.

TLS, SSH and VPN protocols

are

secure communication protocols
wilth

entity authentication mechanisms.

TLS

(and other secure communication protocols)

e Authentication 1s done by establishing trust 1in a
certificate.

e The certificate contains an 1identity and a public key.

e The authenticated key 1s used to establish secure
communication.

e Secure communication can be established assuming the
remote system’s private key has not been compromised.

STAM

(and remote attestation mechanisms)

e Authentication 1s done by establishing trust 1in a
certificate.

e The certificate contains an identity, a public key, and
other claims about the remote system’s attributes.

e The authenticated key 1s used to establish secure
communication.

e Secure communication can be established assuming the
remote system’s private key has not been compromised.

STAM

will assure a local system of a remote system’s

platform provenance
platform state

software authenticity
source code traceability
attestation freshness
certificate transparency

human—-readable 1identity

(signed provisioning manifest)
(signed TPM measurements)
(signed code)

(signed reproducible builds)
(measure a recent Sigsum STH)
(Sigsum log all signatures)

(e.g. X.509 TLS Certificate)

STAM

sighature details

e DC englneer signs

* TPM signs

e Developer signs

e Build chain signs

* Log, witnesses & TPM sign
e Log & withesses sign

e Web CA signs

(signed provisioning manifest)
(signed TPM measurements)
(signed code)

(signed reproducible builds)
(measure a recent Sigsum STH)
(Sigsum log all signatures)

(e.g. X.509 TLS Certificate)

STAM

signature details, cont.

e DC englneer signs : TPM event log during provisioning
e TPM signs : build artefacts in boot chain

e Developer signs : build artefacts

e Build chain signs : build artefacts, source code

e Log, witnesses & TPM sign : Sigsum STH
e Log & witnesses sign : all signatures mentioned

e Web CA signs : domain name

STAM

does not guarantee prevention of yours or others

e design mistakes

e 1mp lementation mistakes
e configuration mistakes
e vulnerabilities

e pbackdoors

Nor does 1t guarantee protection from a malicious person
who procures and provisions the platform.

Conceptual models

STAM cryptographically connects

1. a procured and provisioned platform,

2. enrolled 1n your fleet with an identity and

3. software

to a discoverable and auditable state space of the running
system.

- .' i {LQ\mo\QL s\fébew\\\g \f\()mS Cyovae CQWJOL\ XV\

J8RLAI3

o |

¢ -

3
21
ALL»

S
ANl

i
)

151

MIIMS

~23r s

anfic ot lisiss

112

i
|
!
|

Te . Stbw‘*’ de
User” (o ;um)

—-> USEW g)éoememﬂcj
| > \Jenhfy

DO\’Vo\ C\/\aw\ V\E\

—
—— e em—aae

B

\ser " N « cTiAl cerh Bt

| | ” :4-'2/ & i
| | Plowform et
| @p@fo&‘bow “—ég\g(seew £ 01/ m
| (Sujms
e . . | TaEhA —> Sow(® \)KL
| = L3> soufge hash <—] |
Po\fcy P‘(&TJ‘KDVW\ ,&Jc p (a:B/m |
e s o= Hpdiine (s‘ms) o 20
AwdTior) Al ﬁmf 4% 3 :\’cl e
| .. (meas Rv\\:&o\SQV‘ = l
- ,I ST (signs) !
| : L | | i
‘ | s <bwld hosh | J
| \L . l T
B\WU %o‘sh , :

System Transparency
design philosophy

“Exploitation of vulnerabilities can be
modeled as the practical exploration of
the space of states not intended by the
designer of the system.”

- langsec.org

B e e TN o N .

SR — ——

P

v.oA.l

-

',‘L L ¥

“"l "

s

>

L

. n..i.ﬁ B
. T e— — _

Sl ol | ARahiasr |

“Life 1s complex, as are the tasks we encounter. Our tools must match
the tasks.”

“Complexity 1s good; It i1is confusion that i1s bad.”

“The most important principle for taming complexity 1s to provide a
good conceptual model.”

— Don Norman (The design of everyday things)

“Dealing with complexity 1s the
most important challenge 1n
software design.”

— John Ousterhout (A philosophy of software design)

“The most fundamental problem in computer
science 1s problem decomposition: how to
take a complex problem and divide 1t up 1into
pleces that can be solved independently.”

— John Ousterhout (A philosophy of software design)

“There are two general approaches to fighting complexity:
1. Make code simpler and more obvious

2. Encapsulate 1t so that programmers can work on a system
without being exposed to all of 1ts complexity at once”

— John Ousterhout (A philosophy of software design)

“Thinking clearly 1s hard: we
can use all the help we can
get.”

- Leslie Lamport (Specifying systems)

‘““Conceptual 1integrity 1is the
most important consideration 1in
system design.”

- Fred Brooks (The mythical man-month)

“One of the most important elements of
good software design 1s separating what
matters from what doesn't matter.”

— John Ousterhout (A philosophy of software design)

“To decide what matters, look for leverage, where
the solution to one problem also allows many other
problems to be solved, or where knowing one piece
of 1information make 1t easy to understand many
other things.”

— John Ousterhout (A philosophy of software design)

Complexities that matter

Computational complexity is the foundation of modern
cryptography.

What would the Internet look like without TLS?

Conceptual complexity is the root cause of most(?) security
vulnerabilities.

High-leverage defences

(1ncrease confidence that intended and actual system behaviour are the same)

1. Maximise use of cryptographic defences
(as cryptography relies on computational complexity)
2. Maximise use of hardware defences
(as hardware defines the rules of software)
3. Maximise conceptual integrity
(see quotes)
4. Constrain the reachable state space whenever possible

5. Distribute trust assumptions

Measured and verified boot

1. Load untrusted artefact into memory

2. Hash untrusted artefact

3. Verify (given some trust policy)

4. Execute artefact (if it passed verification)

3. Measure (i.e. append to append-only platform state)

4. Execute artefact unconditionally

,7‘,‘3 l/mvd VO’\V\e
— e~ W57 |

Measured boot

variants

e Different CPU mode contexts (eg sm, um)
e Different cores and/or ICs (TPM, AMD SEV SNP, etc)
e Different stages of the bootchain (DICE, Tillitis TKey)

Tillitis TKey

uses software measurement to derive key material
CDI = Hash(UDS, Hash(software), USS)
e Compound Device Identifier

e Unique per Device Secret

e User-Supplied Secret

Tillitis TKey
flexibility

e while true

e £Fd25519 sign

e Verified boot

e M-of—-n verified boot

* M-of—-n verified boot and Sigsum inclusion proof check

Tillitis TKey

flexibility, cont.

1. Measured boot followed by
2. M-of—-n verified boot and Sigsum inclusion proof check
3. Sigsum inclusion proof check of hash to be signed

4. Ed25519 sign

Tillitis TKey

flexibility, cont. 2

. Measured boot followed by

. M-of—n verified boot and Sigsum inclusion proof check
. Secure communication channel

. Sigsum 1inclusion proof check of hash to be signed

. Ed25519 sign

oo B~ W N =

Tillitais TKey

flexibility, cont.

