
Fredrik Strömberg @ OSFC Oct 11th, 2023

Towards authentication of 
transparent systems



- George Box (Science and statistics)

“All models are wrong, but some 
are useful.”



System Transparency 
Authentication Mechanism



STAM
is (or rather will be)

an authentication mechanism for transparent systems.


A system is transparent if its reachable state space


• can be cryptographically proven by induction starting from 
the platform’s procurement and provisioning manifest,


• has enough conceptual integrity to be comprehended by the 
auditor and


• is globally discoverable by a transparency log monitor.


Work in progress!



STAM
builds on

• secure network communication protocols with entity 
authentication mechanisms


• remote attestation


• reproducible builds


• Sigsum (transparency logging with witness cosigning) and


• ~ “state space constrainment auditability” (?)



Secure communication



Secure communication
protocol design

10-20 years ago:


Cryptographically porous


Today:


Cryptographically verifiable (e.g. WireGuard)



Secure communication
protocol design

1. Pre-shared public key ->


2. ECDH ->


3. KDF ->


4. Symmetric enc/dec & sign/verify (e.g. HMAC):


Authenticated, forward secret, confidential and 
integrity-protected communication channel.



TLS, SSH and VPN protocols
are

secure communication protocols


with


entity authentication mechanisms.



TLS
(and other secure communication protocols)

• Authentication is done by establishing trust in a 
certificate.


• The certificate contains an identity and a public key.


• The authenticated key is used to establish secure 
communication.


• Secure communication can be established assuming the 
remote system’s private key has not been compromised.



STAM
(and remote attestation mechanisms)

• Authentication is done by establishing trust in a 
certificate.


• The certificate contains an identity, a public key, and 
other claims about the remote system’s attributes.


• The authenticated key is used to establish secure 
communication.


• Secure communication can be established assuming the 
remote system’s private key has not been compromised.



STAM
will assure a local system of a remote system’s

• platform provenance


• platform state


• software authenticity


• source code traceability


• attestation freshness


• certificate transparency


• human-readable identity

(signed provisioning manifest)


(signed TPM measurements)


(signed code)


(signed reproducible builds)


(measure a recent Sigsum STH)


(Sigsum log all signatures)


(e.g. X.509 TLS Certificate)



STAM
signature details

• DC engineer signs


• TPM signs


• Developer signs


• Build chain signs


• Log, witnesses & TPM sign


• Log & witnesses sign


• Web CA signs

(signed provisioning manifest)


(signed TPM measurements)


(signed code)


(signed reproducible builds)


(measure a recent Sigsum STH)


(Sigsum log all signatures)


(e.g. X.509 TLS Certificate)



STAM
signature details, cont.

• DC engineer signs


• TPM signs


• Developer signs


• Build chain signs


• Log, witnesses & TPM sign


• Log & witnesses sign


• Web CA signs

: TPM event log during provisioning


: build artefacts in boot chain


: build artefacts


: build artefacts, source code


: Sigsum STH


: all signatures mentioned


: domain name



STAM
does not guarantee prevention of yours or others

• design mistakes


• implementation mistakes


• configuration mistakes


• vulnerabilities


• backdoors


Nor does it guarantee protection from a malicious person 
who procures and provisions the platform.



Conceptual models



STAM cryptographically connects

1. a procured and provisioned platform,


2. enrolled in your fleet with an identity and


3. software


to a discoverable and auditable state space of the running 
system.













System Transparency 
design philosophy



- langsec.org

“Exploitation of vulnerabilities can be 
modeled as the practical exploration of 
the space of states not intended by the 
designer of the system.”





- Don Norman (The design of everyday things)

“Life is complex, as are the tasks we encounter. Our tools must match 
the tasks.”


“Complexity is good; It is confusion that is bad.”


“The most important principle for taming complexity is to provide a 
good conceptual model.”



- John Ousterhout (A philosophy of software design)

“Dealing with complexity is the 
most important challenge in 
software design.”



- John Ousterhout (A philosophy of software design)

“The most fundamental problem in computer 
science is problem decomposition: how to 
take a complex problem and divide it up into 
pieces that can be solved independently.”



- John Ousterhout (A philosophy of software design)

“There are two general approaches to fighting complexity:


1. Make code simpler and more obvious


2. Encapsulate it so that programmers can work on a system 
without being exposed to all of its complexity at once”



- Leslie Lamport (Specifying systems)

“Thinking clearly is hard: we 
can use all the help we can 
get.”



- Fred Brooks (The mythical man-month)

“Conceptual integrity is the 
most important consideration in 
system design.”



- John Ousterhout (A philosophy of software design)

“One of the most important elements of 
good software design is separating what 
matters from what doesn't matter.”



- John Ousterhout (A philosophy of software design)

“To decide what matters, look for leverage, where 
the solution to one problem also allows many other 
problems to be solved, or where knowing one piece 
of information make it easy to understand many 
other things.”



Complexities that matter

Computational complexity is the foundation of modern 
cryptography.


What would the Internet look like without TLS?


Conceptual complexity is the root cause of most(?) security 
vulnerabilities.



High-leverage defences
(increase confidence that intended and actual system behaviour are the same)

1. Maximise use of cryptographic defences


     (as cryptography relies on computational complexity)


2. Maximise use of hardware defences


     (as hardware defines the rules of software)


3. Maximise conceptual integrity


(see quotes)


4. Constrain the reachable state space whenever possible


5. Distribute trust assumptions



Measured and verified boot

1. Load untrusted artefact into memory


2. Hash untrusted artefact


3. Verify (given some trust policy)


4. Execute artefact (if it passed verification)


3. Measure (i.e. append to append-only platform state)


4. Execute artefact unconditionally





Measured boot
variants

• Different CPU mode contexts (eg sm, um)


• Different cores and/or ICs (TPM, AMD SEV SNP, etc)


• Different stages of the bootchain (DICE, Tillitis TKey)



Tillitis TKey
uses software measurement to derive key material

CDI = Hash(UDS, Hash(software), USS)


• Compound Device Identifier


• Unique per Device Secret


• User-Supplied Secret



Tillitis TKey
flexibility

• while true


• Ed25519 sign


• Verified boot


• M-of-n verified boot


• M-of-n verified boot and Sigsum inclusion proof check



Tillitis TKey
flexibility, cont.

1. Measured boot followed by


2. M-of-n verified boot and Sigsum inclusion proof check


3. Sigsum inclusion proof check of hash to be signed


4. Ed25519 sign



Tillitis TKey
flexibility, cont. 2

1. Measured boot followed by


2. M-of-n verified boot and Sigsum inclusion proof check


3. Secure communication channel


4. Sigsum inclusion proof check of hash to be signed


5. Ed25519 sign



Tillitis TKey
flexibility, cont. 3


